证明对角线相等的平行四边形是矩形.

证明对角线相等的平行四边形是矩形.

题目
证明对角线相等的平行四边形是矩形.
答案
已知:四边形ABCD是平行四边形,AC、BD是两条对角线,且AC=BD.
求证:平行四边形ABCD是矩形.
证明:如图,∵四边形ABCD是平行四边形,
∴AB=DC,AB∥DC.
在△ABC与△DCB中,
AB=DC
AC=BD
BC=CB

∴△ABC≌△DCB(SSS).
∴∠ABC=∠DCB.
又∵∠ABC+∠DCB=180°,
∴∠ABC=∠DCB=90°,
∴平行四边形ABCD是矩形.
由全等三角形的判定定理SSS证得△ABC≌△DCB,则∠ABC=∠DCB=90°,所以“有一内角为直角的平行四边形是矩形”.

矩形的判定.

本题考查了矩形的判定.此题通过全等三角形的性质得到同旁内角互补,结合平行线的性质证得平行四边形的两个内角为直角.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.