设A为n阶矩阵,若存在正数k,是线性方程组A^kX=0有解向量α,且A^k-1α≠0.证明:向量组α,Aα,…,A^k-1α线性相关”

设A为n阶矩阵,若存在正数k,是线性方程组A^kX=0有解向量α,且A^k-1α≠0.证明:向量组α,Aα,…,A^k-1α线性相关”

题目
设A为n阶矩阵,若存在正数k,是线性方程组A^kX=0有解向量α,且A^k-1α≠0.证明:向量组α,Aα,…,A^k-1α线性相关”
答案
设有常数m1,m2..mk 使得m1a+m2Aa+,mkA^(k-1)a=0
上式乘以A^(k-1) 有m1A^(k-1)a=0 (A^ka=0 则对任意l>=k,A^(l)a=0)
A^k-1α≠0所以m1=0
再乘以A^(k-2)可以推出m2=0
依次下去得出m1=m2=...mn=0
所以线性无关
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.