P是正方形ABCD所在平面外一点,且PA=PB=PC=PD=13,M,N是PA于BD上的点,且PM/MA=BN/ND=5/8,求证MN ∥ 平面PBC

P是正方形ABCD所在平面外一点,且PA=PB=PC=PD=13,M,N是PA于BD上的点,且PM/MA=BN/ND=5/8,求证MN ∥ 平面PBC

题目
P是正方形ABCD所在平面外一点,且PA=PB=PC=PD=13,M,N是PA于BD上的点,且PM/MA=BN/ND=5/8,求证MN ∥ 平面PBC
答案
取一点E 使BE/EA=5/8,连接ME,连接EM,并延长交AC于F,
因为BE/EA=PM/MA=5/8,所以ME||PB,所以ME||面PBC
因为BN/ND=BE/EA=5/8,所以EF||CB,所以EF||面PBC
所以面MEF||面PBC,MN在面MEF上,因此MN||面PBC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.