已知数列{an}中,a1=2,a2=3,其前n项和sn满足S[n+1]+S[n-1]=2S[n]+1(n>=2)求{an}通项
题目
已知数列{an}中,a1=2,a2=3,其前n项和sn满足S[n+1]+S[n-1]=2S[n]+1(n>=2)求{an}通项
a[n+1]+a[n-1]=2a[n-1](n>=2)
后面就不会了*********************
答案
a(n+1)=a(n)+1(n>=2)
a(n+1)-a(n)=1
a1=2,a2=3即当n=1时成立
a(n)-a(n-1)+a(n-1)-a(n-2).a(2)-a(1)=n-1.n-1个1相加
a(n)-a(1)=n-1
a(n)=n+1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点