设m、n为正整数,且m≠2,如果对一切实数t,二次函数y=x2+(3-mt)x-3mt的图像与x轴的两个交点间的距离不小于|2t+m|,求m、n的值

设m、n为正整数,且m≠2,如果对一切实数t,二次函数y=x2+(3-mt)x-3mt的图像与x轴的两个交点间的距离不小于|2t+m|,求m、n的值

题目
设m、n为正整数,且m≠2,如果对一切实数t,二次函数y=x2+(3-mt)x-3mt的图像与x轴的两个交点间的距离不小于|2t+m|,求m、n的值
答案
设二次函数y=x²+(3-mt)x-3mt与x轴的交点为x1,x2,
显然,x²+(3-mt)x-3mt=0时的根就是x1和x2,
又因为:
x²+(3-mt)x-3mt=(x-mt)(x+3)=0
因此:
|x1-x2|=|mt-3|
根据题意:
|mt-3| ≥ |2t+n|
因此:
(mt-3)² ≥ (2t+n)²
化简得:
(m²-4)t²+(6m-4n)t+9-n² ≥ 0
因为上式对于任何t都成立,因此该二次函数必定能配方成完全平方式,也就是说:
√△=0,且m²-4>0,于是:
△=(6m-4n)²-4(m²-4)(9-n²)
=4(mn-6)²=0
∴mn=6
m、n为正整数,m>2(m
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.