求三角函数多次方积分
题目
求三角函数多次方积分
∫(0到2π)sin(t/2)的5次方dt,怎么求积分
答案
要求∫_0^2pi▒〖(sin(t/2) )^5〗dt,
先化sin(t/2)的四次方,(sin(t/2))^4=(1-(cos(t/2))^2)^2=1-2(cos(t/2))^2+(cos(t/2))^4,令t/2=x,所以x在(0,pi),先化不定积分2∫(sin(x))^5dx=-2∫(1-cos(x)^2)^2d(cos(x))=-2∫(1-2(cos(x))^2+(cos(x))^4)d(cos(x))=-2(cos(x)-2/3cos(x)^3+1/5cos(x)^5)+C所以∫_0^2pi▒〖(sin(t/2) )^5〗dt=28/15.
只简单的算了下 结果不一定正确,我认为重在方法是怎么做就可以啦!
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点