如图,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH, (1)求证:四边形EBFC是菱形; (2)如果∠BAC=∠ECF,求证:AC⊥CF.
题目
如图,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,
(1)求证:四边形EBFC是菱形;
(2)如果∠BAC=∠ECF,求证:AC⊥CF.
答案
证明:(1)∵AB=AC,AH⊥CB,∴BH=HC.(2分)∵FH=EH,∴四边形EBFC是平行四边形.(2分)又∵AH⊥CB,∴四边形EBFC是菱形.(2分)(2)证明:∵四边形EBFC是菱形.∴∠2=∠3=12∠ECF.(2分)∵AB=AC,AH⊥CB...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点