设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵
题目
设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵
写出A的实对称分解:A=QDQ^T,Q正交,D对角,且D=diag(a1E,...akE),ai是互不相同的特征值。
对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而aiE+反对称阵是可逆的,
{(aiE+B)(aiE+B)'=(aiE+B)(aiE-B)=(ai^2)E+BB',BB'为正定或半正定,与数量阵之和为正定}
by mscheng19
答案
写出A的实对称分A=QDQ^T,Q正交,D对角,且D=diag(a1E,...,akE),ai是互不相同的特征值.
对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而aiE+反对称阵是可逆的,
{(aiE+B)(aiE+B)'=(aiE+B)(aiE-B)=(ai^2)E+BB',BB'为正定或半正定,与数量阵之和为正定}
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点