n阶方阵A满足A的平方等于A,请利用矩阵的满秩分解证明A的秩加A-E的秩大于等于n,并进而证明其等于n.

n阶方阵A满足A的平方等于A,请利用矩阵的满秩分解证明A的秩加A-E的秩大于等于n,并进而证明其等于n.

题目
n阶方阵A满足A的平方等于A,请利用矩阵的满秩分解证明A的秩加A-E的秩大于等于n,并进而证明其等于n.
答案
A^2=A
->A(A-E)=0
所以r[A(A-E)]≥r(A)+r(A-E)-n
r(A)+r(A-E)≥r(A-A+E)
所以r(A)+r(A-E)=n
也可以用分块矩阵做
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.