函数y=f(x)为偶函数且在[0,+∞)上是减函数,则f(4-x2)的单调递增区间为 _.

函数y=f(x)为偶函数且在[0,+∞)上是减函数,则f(4-x2)的单调递增区间为 _.

题目
函数y=f(x)为偶函数且在[0,+∞)上是减函数,则f(4-x2)的单调递增区间为 ______.
答案
∵函数y=f(x)为偶函数且在[0,+∞)上是减函数,
∴f(x)在(-∞,0)上单调递增
令t=4-x2,则t=4-x2≥0时,-2≤x≤2,且函数t在x∈[-2,0]上单调递增,t在x∈[0,2]上单调递减
根据复合函数的同增异减可知:函数f(4-x2)在[0,2]上单调递增
同理可求出函数f(4-x2)在(-∞,-2]上单调递增
故答案为:(-∞,-2],[0,2].
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.