如图,已知圆C:(x-1)2+y2=r2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好落在y轴上. (Ⅰ)当r=2时,求满足条件的P点的坐标; (Ⅱ)当r∈(1,+∞

如图,已知圆C:(x-1)2+y2=r2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好落在y轴上. (Ⅰ)当r=2时,求满足条件的P点的坐标; (Ⅱ)当r∈(1,+∞

题目
如图,已知圆C:(x-1)2+y2=r2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好落在y轴上.

(Ⅰ)当r=2时,求满足条件的P点的坐标;
(Ⅱ)当r∈(1,+∞)时,求点N的轨迹G的方程;
(Ⅲ)过点P(0,2)的直线l与(Ⅱ)中轨迹G相交于两个不同的点E、F,若
CE
CF
>0
,求直线l的斜率的取值范围.
答案
(1):由已知得,r=2时,可求得M点的坐标为(-1,0),
设N(x,y)则
(x-1)2+y2=4
x-1=0
解得N(1,±2).
所以MN的中点P坐标为(0,±1).
(2):设N(x,y)由已知得,在圆方程中令y=0,求得M点的坐标为(1-r,0).
设P(0,b),则由kCPkmp=-1(或用勾股定理)得:r=b2+1.
(x-1)2+y2=r2
x+1-r=0
,消去r,
又r>1,所以点N的轨迹方程为y2=4x(x≠0).
(3)设直线l的方程为y=kx+2,M(x1,y1),N(x2,y2),
y=kx+2
y2=4x

消去y得k2x2+(4k-4)x+4=0,因为直线l与抛物线y2=4x(x>0)相交于两个不同的点M,N,
所以△=-32k+16>0,所以k<
1
2

又因为
CM
CN
>0
,所以(x1-1)(x2-1)+y1y2>0,
所以(k2+1)x1x2+(2k-1)(x1+x2)+5>0,得k2+12k>0,
所以k>0或k<-12,
综上可得0<k<
1
2
或k<-12
(1)由已知得,r=2时,可求得M点的坐标为(-1,0),设N(x,y)联立方程可解得MN的中点P坐标;
(2)设N(x,y)由已知得,先利用圆方程求得M点的坐标,再设P(0,b),得:r=b2+1.利用圆的方程与x+1-r=0消去r,即可得出点N的轨迹方程;
(3)设直线l的方程为y=kx+2,将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量的数量积公式即可求得k值范围,从而解决问题.

直线与圆锥曲线的综合问题.

本题是中档题,考查动点的轨迹方程的求法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.