设n是正整数,证明:n(n^2-1)(n^2-5n+26)被120整除

设n是正整数,证明:n(n^2-1)(n^2-5n+26)被120整除

题目
设n是正整数,证明:n(n^2-1)(n^2-5n+26)被120整除
答案
【注】两个结论:
【1】5个连续自然数的积必能被120整除.
【2】3个连续自然数的积必能被6整除.
【【证明】】
∵n²-5n+26
=(n²-5n+6)+20
=(n-3)(n-2)+20.
∴原式=(n-3)(n-2)(n-1)n(n+1)+20(n-1)n(n+1).
结合上面的两个结论,你就能证明了,相信你会的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.