如图,菱形ABCD,∠BAD=120°,点M为BC上一点,点N为CD上一点,若∠AMN=60°,试判断△AMN的形状,说明理由(请用全等三角形的方法解答).

如图,菱形ABCD,∠BAD=120°,点M为BC上一点,点N为CD上一点,若∠AMN=60°,试判断△AMN的形状,说明理由(请用全等三角形的方法解答).

题目
如图,菱形ABCD,∠BAD=120°,点M为BC上一点,点N为CD上一点,若∠AMN=60°,试判断△AMN的形状,说明理由(请用全等三角形的方法解答).
答案
答:△AMN是等边三角形.
证明:连接AC交MN于点F,过点M作ME∥AC交AB于点E,
∵菱形ABCD中,∠BAD=120°,
∴△ABC与△ACD为等边三角形,∠BCD=120°,
∴AB=BC,
∴∠B=60°,
∴△BME为等边三角形,
∴EM=BM=BE,∠BEM=60°,
∴∠AEM=120°,
∴∠AEM=∠BCD,
∴AB-BE=BC-BM,
即AE=MC,
∵∠AMC为△ABM的一个外角,
∴∠AMC=∠B+∠1,
∵∠AMC=∠AMN+∠2,
∵∠AMN=∠B=60°,
∴∠1=∠2,
在△AEM和△MCN中,
∠1=∠2
AE=MC
∠AEM=∠MCN

∴△AEM≌△MCN(ASA),
∴AM=MN,
∵∠AMN=60°,
∴△AMN是等边三角形.
首先连接AC交MN于点F,过点M作ME∥AC交AB于点E,进而得出△BME为等边三角形,求出AE=MC,再证△AEM≌△MCN(ASA),得出△AMN的形状.

菱形的性质;全等三角形的判定与性质.

此题主要考查了全等三角形的判定与性质以及菱形的性质和等边三角形的判定与性质等知识,得出△AEM≌△MCN是解题关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.