(arctanx-sinx)/x*x*x的x趋于0时的极限
题目
(arctanx-sinx)/x*x*x的x趋于0时的极限
答案
过程省去limx-->0
(arctanx-sinx)/x*x*x
=[1/(1+x²)-cosx]/3x²(洛必达法则)
=[1-x²-1+2sin²(x/2)]/3x² (1/(1+x²)展开,cosx=1-2sin²x/2)
=(-x²+2*x²/4)/3x² (sinx/2和x/2为等价无穷小)
=(-1/2)/3
=-1/6
希望对你有所帮助
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题