设函数f(x)=1/2x2+ax+2lnx,a属于R,已知函数f(x)在x=1处有极值 证明对任意的n﹥1,不等式ln2^n/n!﹤1/12n^3-5/8n^2+31/24n

设函数f(x)=1/2x2+ax+2lnx,a属于R,已知函数f(x)在x=1处有极值 证明对任意的n﹥1,不等式ln2^n/n!﹤1/12n^3-5/8n^2+31/24n

题目
设函数f(x)=1/2x2+ax+2lnx,a属于R,已知函数f(x)在x=1处有极值 证明对任意的n﹥1,不等式ln2^n/n!﹤1/12n^3-5/8n^2+31/24n
恒成立
答案
f(x)=1/2x2+ax+2lnx
f'(x)=x+a+2/x
在x=1处有极值
∴f'(1)=1+a+2/1=0
a=-3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.