这个积分怎么算∫(1-x^2)/(x(1+x^2))dx=?

这个积分怎么算∫(1-x^2)/(x(1+x^2))dx=?

题目
这个积分怎么算∫(1-x^2)/(x(1+x^2))dx=?
答案
∫(1-x^2)/[x(1+x^2)]dx
let
(1-x^2)/[x(1+x^2)] = a/x+ (b1x+b0)/(1+x^2)
1-x^2= a(1+x^2) +x(b1x+b0)
put x=0
a=1
coef.of x^2
-1=a+b1
b1=-2
coef.of x
b0=0
(1-x^2)/[x(1+x^2)] = 1/x- 2x/(1+x^2)
∫(1-x^2)/[x(1+x^2)]dx
=∫[1/x- 2x/(1+x^2)] dx
= ln|x| - ln(1+x^2) + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.