求证:当n是整数时,两个连续整数的平方差等于这两个连续整数的和.

求证:当n是整数时,两个连续整数的平方差等于这两个连续整数的和.

题目
求证:当n是整数时,两个连续整数的平方差等于这两个连续整数的和.
答案
当n是整数时,两个连续整数可以表示为n和n+1
(n+1)的平方-n的平方
=(n+1+n)(n+1-n)
=2n+1
=n+(n+1)
所以当n是整数时,两个连续整数的平方差等于这两个连续整数的和.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.