如图,在正三棱柱ABC-A1B1C1中,点D是棱BC的中点. 求证:(1)AD⊥C1D; (2)A1B∥平面ADC1.

如图,在正三棱柱ABC-A1B1C1中,点D是棱BC的中点. 求证:(1)AD⊥C1D; (2)A1B∥平面ADC1.

题目
如图,在正三棱柱ABC-A1B1C1中,点D是棱BC的中点.
求证:(1)AD⊥C1D;
(2)A1B∥平面ADC1
答案
证明:(1)因为三棱柱ABC-A1B1C1是正三棱柱,
所以C1C⊥平面ABC,又AD⊂平面ABC,
所以C1C⊥AD,又点D是棱BC的中点,且△ABC为正三角形,
所以AD⊥BC,因为BC∩C1C=C,所以AD⊥平面BCC1B1
又因为DC1⊂平面BCC1B1,所以AD⊥C1D;(6分)
(2)连接A1C交AC1于点E,再连接DE.
因为四边形A1ACC1为矩形,所以E为A1C的中点,
又因为D为BC的中点,所以ED∥A1B.
又A1B⊄平面ADC1,ED⊂平面ADC1,所以A1B∥平面ADC1.(14分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.