已知四棱锥P-ABCD的底面是菱形.PB=PD,E为PA的中点. (Ⅰ)求证:PC∥平面BDE; (Ⅱ)求证:平面PAC⊥平面BDE.

已知四棱锥P-ABCD的底面是菱形.PB=PD,E为PA的中点. (Ⅰ)求证:PC∥平面BDE; (Ⅱ)求证:平面PAC⊥平面BDE.

题目
已知四棱锥P-ABCD的底面是菱形.PB=PD,E为PA的中点.

(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求证:平面PAC⊥平面BDE.
答案
(Ⅰ)设O为AC、BD的交点,连接EO∵E,O分别为PA,AC的中点,∴EO∥PC.∵EO⊂平面BDE,PC⊄平面BDE∴PC∥平面BDE.…(6分)(Ⅱ)证明:连接OP∵PB=PD,O为BD的中点∴OP⊥BD.又∵在菱形ABCD中,BD⊥AC且OP∩AC=O...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.