如图,在正方形ABCD中,E、F分别在BC、CD上,∠EAF=45°,试证明S△AEF=S△ABE+S△ADF.

如图,在正方形ABCD中,E、F分别在BC、CD上,∠EAF=45°,试证明S△AEF=S△ABE+S△ADF.

题目
如图,在正方形ABCD中,E、F分别在BC、CD上,∠EAF=45°,试证明S△AEF=S△ABE+S△ADF
答案
证明:延长CD到M,使DM=BE,连接AM,∵四边形ABCD是正方形,∴AD=AB,∠B=∠BAD=∠ADC=∠ADM=90°,∵在△ABE和△ADM中,AB=AD∠B=∠ADMBE=DM∴△ABE≌△ADM(SAS),∴AM=AE,S△ABE=S△ADM,∠MAD=∠EAB,∵∠B...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.