如图已知BO、CO分别是∠ABC、∠ACB的平分线且BO、CO交于点O,试探索∠BOC与∠A之间是否有固定不变的数量关
题目
如图已知BO、CO分别是∠ABC、∠ACB的平分线且BO、CO交于点O,试探索∠BOC与∠A之间是否有固定不变的数量关
如图已知BO、CO分别是∠ABC、∠ACB的平分线且BO、CO相交于点O,试探索∠BOC与∠A之间是否有固定不变的数量关系,说明理由
答案
∠BOC=90°+∠A/2
∵∠ABC+∠ACB=180°-∠BAC
∴(∠ABC+∠ACB)/2=90°-∠A/2
就是∠OBC+∠OCB=90°-∠A/2
在△OBC中:∠BOC=180°-(∠OBC+∠OCB)
∴∠BOC=180°-(90°-∠A/2)
∴∠BOC=90°+∠A/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点