已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0. (1)当a>2时,求函数f(x)的单调递增区间; (2)当a=4时,若函数y=f(x)-m有三个不同的零点,求m的取值范围.

已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0. (1)当a>2时,求函数f(x)的单调递增区间; (2)当a=4时,若函数y=f(x)-m有三个不同的零点,求m的取值范围.

题目
已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,若函数y=f(x)-m有三个不同的零点,求m的取值范围.
答案
(1)由f(x)=x2-(a+2)x+alnx可知,函数的定义域为{x|x>0},且f′(x)=2x−(a+2)+ax=2x2−(a+2)x+ax=(2x−a)(x−1)x因为a>2,所以a2>1.当0<x<1或x>a2时,f'(x)>0;当1<x{%<...
(1)求导数f′(x),当a>2时在函数定义域内解不等式f′(x)>0即可.
(2)数形结合:当a=4时,用导数求出函数y=f(x)的极大值与极小值,画出草图,借助图象即可求得m的取值范围.

利用导数研究函数的单调性;根的存在性及根的个数判断.

本题考查了导数的综合应用,用导数求函数单调区间、求函数极值以及作图能力,数形结合思想在解决本题中提供了有力保障.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.