设a,b∈(0,+∞),且a≠b,证明:a3+b3>a2b+ab2.

设a,b∈(0,+∞),且a≠b,证明:a3+b3>a2b+ab2.

题目
设a,b∈(0,+∞),且a≠b,证明:a3+b3>a2b+ab2
答案
证明:(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=(a+b)(a-b)2
又∵a,b∈(0,+∞),且a≠b,∴a+b>0,而(a-b)2>0.
∴(a+b)(a-b)2>0.
故(a3+b3)-(a2b+ab2)>0,
即a3+b3>a2b+ab2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.