在三角形ABC中,已知角ABC的边为abc,且满足sinA=tanB,a=b(1+cosA),求证角A=角C
题目
在三角形ABC中,已知角ABC的边为abc,且满足sinA=tanB,a=b(1+cosA),求证角A=角C
答案
由sinA=tanB,得sinB=cosBsinA (1)
由a=b(1+cosA)及正弦定理得sinA=sinB(1+cosA)=sinB+sinBcosA (2)
把(1)代入(2)得sinA=cosBsinA+sinBcosA =sin(A+B)
于是有A=A+B(不可能)或A+B=180-A,而A+B=180-C
所以A=C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点