线性代数,可逆矩阵,初等变换

线性代数,可逆矩阵,初等变换

题目
线性代数,可逆矩阵,初等变换
有下面两句话.
1,设A,B为同阶可逆矩阵,则存在可逆矩阵C,使得C‘AC=B C’是C的转置矩阵
2,设A,B为同阶可逆矩阵,则存在可逆矩阵P,Q,使得PAQ=B
第一句是错的,第二句是对的,为什么呢?
答案
首先讲第二句 同阶可逆矩阵秩相等,就是相抵矩阵,相抵即可通过初等变换得到,书上有证明
第一句,满足前半句话只要求矩阵相抵就行了,比如[1,0;01]和[1,0;0,-1],
后半句话是要求矩阵合同的,显然[1,0;01]和[1,0;0,-1]做不到合同,所以C是不一定存在的
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.