如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点. (1)求证:DF⊥AP; (2)在线段AD上是否存在点G,使GF⊥平面PBC?若存在,说明点G的位

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点. (1)求证:DF⊥AP; (2)在线段AD上是否存在点G,使GF⊥平面PBC?若存在,说明点G的位

题目
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点.

(1)求证:DF⊥AP;
(2)在线段AD上是否存在点G,使GF⊥平面PBC?若存在,说明点G的位置,并证明你的结论;若不存在,请说明理由.
答案
作业帮证明:(1)取AB中点E,连接EF,DE
∵E,F分别是AB,PB的中点,
∴EF∥AP,
∴AP 和DF所成的角即为EF和DF所成的角,即∠DFE或其补角;
由已知四边形ABCD是正方形,
假设PD=DC=a,
则有DB=
2
a,PB=
3
a,DF=
3
2
a
AE=
a
2
,DE=
5
2
a,PA=
2
a,EF=
2
2
a

∴cos∠DFE=
DF2+EF2-DE2
2DF•EF
=0,
∴DF⊥EF,∴DF⊥AP.
(2) G是AD的中点时,GF⊥平面PCB.作业帮
证明如下:取PC中点H,连接DH,HF.
∵PD=DC,∴DH⊥PC.
又∵BC⊥平面PDC,∴DH⊥BC,
∵DH⊥PC,DH⊥BC,PC∩BC=C,PC,BC⊂平面PBC
∴DH⊥平面PCB.                           
HF∥BC,且HF=
1
2
BC
,∴HF
.
GD,
∴四边形DGFH为平行四边形,DH∥GF,
∴GF⊥平面PCB.
(1)利用三角形的中位线定理平移作出异面直线所成的角,再利用余弦定理即可求出;
(2)利用平行四边形、线面垂直的判定定理和性质即可得出.

直线与平面垂直的性质;直线与平面垂直的判定.

熟练掌握利用三角形的中位线定理及余弦定理求异面直线所成的角、线面垂直的判定定理和性质定理是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.