已知函数f(x)=−2a2lnx+1/2x2+ax(a∈R). (Ⅰ) 讨论函数f(x)的单调性; (Ⅱ)当a<0时,求函数f(x)在区间[1,e]的最小值.

已知函数f(x)=−2a2lnx+1/2x2+ax(a∈R). (Ⅰ) 讨论函数f(x)的单调性; (Ⅱ)当a<0时,求函数f(x)在区间[1,e]的最小值.

题目
已知函数f(x)=−2a2lnx+
1
2
x2+ax
(a∈R).
(Ⅰ) 讨论函数f(x)的单调性;
(Ⅱ)当a<0时,求函数f(x)在区间[1,e]的最小值.
答案
函数f(x)的定义域为(0,+∞),…(1分)
(Ⅰ)f′(x)=
x2+ax−2a2
x
(x+2a)(x−a)
x
,…(4分)
(1)当a=0时,f'(x)=x>0,所以f(x)在定义域为(0,+∞)上单调递增; …(5分)

(2)当a>0时,令f'(x)=0,得x1=-2a(舍去),x2=a,
当x变化时,f'(x),f(x)的变化情况如下:
此时,f(x)在区间(0,a)单调递减,
在区间(a,+∞)上单调递增;          …(7分)

(3)当a<0时,令f'(x)=0,得x1=-2a,x2=a(舍去),
当x变化时,f'(x),f(x)的变化情况如下:
此时,f(x)在区间(0,-2a)单调递减,
在区间(-2a,+∞)上单调递增.…(9分)
(Ⅱ)由(Ⅰ)知当a<0时,f(x)在区间(0,-2a)单调递减,在区间(-2a,+∞)上单调递增.…(10分)
(1)当-2a≥e,即a≤−
e
2
时,f(x)在区间[1,e]单调递减,
所以,[f(x)]min=f(e)=−2a2+ea+
1
2
e2
;                     …(11分)
(2)当1<-2a<e,即
e
2
<a<−
1
2
时,f(x)在区间(1,-2a)单调递减,
在区间(-2a,e)单调递增,所以[f(x)]min=f(−2a)=−2a2ln(−2a),…(12分)
(3)当-2a≤1,即
1
2
≤a<0
时,f(x)在区间[1,e]单调递增,
所以[f(x)]min=f(1)=a+
1
2
.…(13分)
(Ⅰ)求出函数f(x)的导数,令导数大于0求出函数的增区间,令导数小于0,求出函数的减区间
(Ⅱ)a<0时,用导数研究函数f(x)在[1,e]上的单调性确定出最小值,借助(Ⅰ)的结论,由于参数的范围对函数的单调性有影响,故对其分类讨论,

利用导数研究函数的单调性;利用导数求闭区间上函数的最值.

本题考查用导数研究函数的单调性,解题的键是理解并掌握函数的导数的符号与函数的单调性的关系,此类题一般有两类题型,一类是利用导数符号得出单调性,一类是由单调性得出导数的符号,本题属于第一种类型.本题的第二小问是根据函数在闭区间上的最值,本题中由于参数的存在,导致导数的符号不定,故需要对参数的取值范围进行讨论,以确定函数在这个区间上的最值.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.