已知四棱锥P-ABCD,底面ABCD是∠A=60°边长为a的菱形,有PD⊥底ABCD,且PD=CD,点M,N分别是棱AD,PC中点

已知四棱锥P-ABCD,底面ABCD是∠A=60°边长为a的菱形,有PD⊥底ABCD,且PD=CD,点M,N分别是棱AD,PC中点

题目
已知四棱锥P-ABCD,底面ABCD是∠A=60°边长为a的菱形,有PD⊥底ABCD,且PD=CD,点M,N分别是棱AD,PC中点
证明 面PMB 垂直 面PAD
答案
连接MB 由ABCD为菱形 ∠A=60°得BM⊥AD
又PD⊥底ABCD BM属于平面ABCD 属于BM⊥PD
AD交PD于D
所以 面PMB 垂直 面PAD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.