已知方程xy-eˆ2x=siny 确定隐函数y=y(x),求dy/dx
题目
已知方程xy-eˆ2x=siny 确定隐函数y=y(x),求dy/dx
请给出具体步骤!
答案
xy-eˆ(2x)=siny
两边对x求导,得
y+x(dy/dx)-2eˆ(2x)=(cosy)*(dy/dx)
(x-cosy)*(dy/dx) =2eˆ(2x)-y
dy/dx=[2eˆ(2x)-y]/(x-cosy)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点