关于确界原理的一道证明题

关于确界原理的一道证明题

题目
关于确界原理的一道证明题
设A、B皆为非空有界数集,定义数集
A+B={x│z=x+y,x∈A,y∈B}
证明sup (A+B)=sup A+sup B
答案
A与B是非空有界数集,那么它们符合确界原理必存在唯一的上(下)确界,
A+B={x│z=x+y,x∈A,y∈B},那么,它们的确界是sup (A+B),根据加法法则,sup (A+B)=sup A+sup B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.