已知椭圆y²/a²+x²/b²=1的上下焦点分别为F1,F2,短轴的两个端点分别为A,B
题目
已知椭圆y²/a²+x²/b²=1的上下焦点分别为F1,F2,短轴的两个端点分别为A,B
且四边形F1AF2B是边长为2的正方形
(1)求椭圆的方程
(2)已知直线斜率为√2,若直线l与椭圆交与P,Q两点,O为坐标原点,求△OPQ面积的最大值
答案
短轴端点到两个焦点距离之和为2a,又因为正方形,边长相等.所以a=2,
a,b,c成一个直角三角形,.,所以b=c等于根号2.
方程为
x^2/4+y^2/2=1...
第二个设直线方程,然后
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点