数学问题,望高手解答

数学问题,望高手解答

题目
数学问题,望高手解答
Pn(x)是一个n次多项式
(1)求证:Pn(x)在任意点x0处的泰勒公式为
Pn(x)=Pn(x0)+Pn'(x0)(x-x0)+……+1/n!*Pn(n)(x0)(x-x0)^n
(2)若存在一个数a,使Pn(a)>0,Pn(k)(a)≥0,k=1,2,3……,n
证明:Pn(x)的所有实根都不超过a
(Pn(n)(x)表示Pn(x)的n阶导数)
答案
(1)由于Pn为n次多项式,对于任意的x,都有Pn(n+1)(x)=0,代入公式即可证明.
(2)设Pn(a)=b0,Pn(k)(a)=bk
由于Pn(x)在(-∞,+∞)内均有n+1阶导数,令x0=a
则Pn(x)=Pn(a)+Pn'(a)(x-a)+……+1/n!*Pn(n)(a)(x-a)^n
=b0+b1(x-a)+……+1/n!*bn(x-a)^n
若存在y为Pn(x)=0的根y>a,则Pn(y)>0
可知所有实根均不超过a
很基础的题目,仔细看看课本上的定理就可以的
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.