平面四边形ABCD中,AB=13,AD=5,AC=5,cos角DAC=3/5,cos角BAC=12/13,设向量AC=x向量AB+y向量AD

平面四边形ABCD中,AB=13,AD=5,AC=5,cos角DAC=3/5,cos角BAC=12/13,设向量AC=x向量AB+y向量AD

题目
平面四边形ABCD中,AB=13,AD=5,AC=5,cos角DAC=3/5,cos角BAC=12/13,设向量AC=x向量AB+y向量AD
求x,y 的值.各路大神看看.
答案
因为 cos∠DAC=3/5 ,cos∠BAC=12/13 ,
因此 sin∠DAC=4/5 ,sin∠BAC=5/13 ,
所以 cos∠BAD=cos(∠BAC+∠DAC)=cos∠BACcos∠DAC-sin∠BACsin∠DAC
=3/5*12/13-4/5*5/13=16/65 ,
则 AB*AD=|AB|*|AD|*cos∠BAD=13*5*16/65=16 ,
因此在 AC=xAB+yAD 两端同乘以 AB 、AD 得
AC*AB=xAB^2+yAD*AB ,即 5*13*12/13=169x+16y ,(1)
AC*AD=xAB*AD+yAD^2 ,即 5*5*3/5=16x+25y ,(2)
由(1)(2)解得 x=20/63 ,y=25/63 .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.