为什么分属于不同特征值的特征向量就线性无关呢?

为什么分属于不同特征值的特征向量就线性无关呢?

题目
为什么分属于不同特征值的特征向量就线性无关呢?
答案
反证法
设AX1=λ1X1,x1≠0
AX2=λ2X2,x2≠0
且λ1≠λ2
若x1,x2线性相关
则存在k≠0,使X1=kx2
∴AX1=Akx2=kAx2=kλ2X2
AX1=λ1X1=λ1kx2
∴λ1kX2=kλ2X2
∴λ1=λ2
与λ1≠λ2矛盾
∴分属于不同特征值的特征向量线性无关
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.