求由曲面z=0及z=4-x^2-y^2所围空间立体的体积?二重积分解

求由曲面z=0及z=4-x^2-y^2所围空间立体的体积?二重积分解

题目
求由曲面z=0及z=4-x^2-y^2所围空间立体的体积?二重积分解
答案
联立z1=x^2+2y^2及z2=6-2x^2-y^2
消去z得x^2+y^2=2(图略.z2在上z1在下)
知方体Ω在xoy面投影区域为D:x^2+y^≤2
极坐标中0≤θ≤2π,0≤r≤√2
那么立体的Ω体积
V=∫∫(z2-z1)dxdy
=3∫∫(2-x^2-y^2)dxdy
=3∫(0,2π)dθ∫(2-r^2)rdr
=6π[2r^2-(1/4)r^4]|(0,√2)
=6π
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.