如图所示,在△ABC中,AB=AC,E是AB中点,D在BC上,延长ED到F,使ED=DF=EB,连接FC.求证:四边形AEFC是平行四边形.
题目
如图所示,在△ABC中,AB=AC,E是AB中点,D在BC上,延长ED到F,使ED=DF=EB,连接FC.求证:四边形AEFC是平行四边形.
答案
证明:∵EB=DE,
∴∠B=∠EDB,
∵AB=AC,
∴∠B=∠ACB.
∴∠EDB=∠ACB.
∴EF∥AC.
∵ED=DF=BE,
∴EB=
EF.
又∵E为AB中点,
∴EB=
AB=
AC.
∴EF=AC.
∴四边形AEFC为平行四边形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点