设单调递增函数f(x)的定义域为(0,正无穷),且对任意得正实数x.y有f(xy)=f(x)+f(y)且f(1/2)=-1

设单调递增函数f(x)的定义域为(0,正无穷),且对任意得正实数x.y有f(xy)=f(x)+f(y)且f(1/2)=-1

题目
设单调递增函数f(x)的定义域为(0,正无穷),且对任意得正实数x.y有f(xy)=f(x)+f(y)且f(1/2)=-1
(1)一个各项为正数的数列{an}满足:f(Sn)=f(an)+f(an+1)-1其中Sn为数列{an}的前n项和,求{a}的通项公式.
(2)在(1)的条件下,是否存在正数M使下列不等式对一切n属于N*成立?若存在,求出M的取值范围;若不存在,请说明理由.
2^n*a1*a2.*an>=M*根号(2n+1)*(2a1-10*(2a2-1)*.(2an-1)
根号只在(2n+1)上.an+1的1在外面
第一问已经解决了,an=n,主要是要解决第二问!
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.