一道高一二次函数题

一道高一二次函数题

题目
一道高一二次函数题
设二次函数f(x)=ax²+bx+c(a,b,c∈R)满足下列条件:
1>当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)成立;
2>当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求f(x)解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当x∈[1,m]时,就有f(x+t)≤x成立.
答案
(1)根据②,1≤f(1)≤1,即f(1)=1(2)f(x-1)=f(-x-1),说明对称轴是x=(x-1-x-1)/2=-1,又因为最小值为0,所以二次函数为y=1/4*(x+1)^2(3)这个,你可以分开来看,就是等效于f(x+t)在∈[1,m]时,图象在y=x的下方.那么就可以得到...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.