如图,在平行四边形ABCD中,点E是AD边的中点,BE的延长线与CD的延长线相交于点F,求证:四边形ABDF是平行四边形.
题目
如图,在平行四边形ABCD中,点E是AD边的中点,BE的延长线与CD的延长线相交于点F,求证:四边形ABDF是平行四边形.
答案
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABE=∠BFD,
∵点E是AD的中点,
∴AE=DE.
在△ABE与△DFE中,
,
∴△ABE≌△DFE(ASA),
∴AB=DF,
∵AB∥DF,
∴四边形ABDF为平行四边形.
因为平行四边形的对边平行且相等,所以AB∥CD,AB=CD;又因为点E是AD的中点,易得△ABE≌△DFE,所以AB=DF,所以四边形ABDF为平行四边形.
平行四边形的判定与性质.
此题考查了平行四边形的性质:平行四边形的对边平行且相等.此题还考查了平行四边形的判定:一组对边平行且相等的四边形是平行四边形.解题的关键是准确选择适宜的判定方法.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点