如果n阶实对称矩阵A,B的特征多项式相同,则存在正交矩阵Q,使Q^(-1)AQ=B
题目
如果n阶实对称矩阵A,B的特征多项式相同,则存在正交矩阵Q,使Q^(-1)AQ=B
答案
特征多项式相同,则A,B的特征值相同,都设为a1,a2,...,an.由于实对称阵必可正交对角化,即存在正交阵Q1,Q2使得Q1^(--1)AQ1=D=diag(a1,a2,...,an),Q2^(--1)BQ2=D=diag(a1,a2,...,an).令Q=Q1Q2^(--1)是正交阵,则Q^(--1)AQ...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点