P是圆O外一点,PA,PB是圆O切线,A,B是切点,AB交OP于点C,求证:CP⊥AB,且AC=BC.

P是圆O外一点,PA,PB是圆O切线,A,B是切点,AB交OP于点C,求证:CP⊥AB,且AC=BC.

题目
P是圆O外一点,PA,PB是圆O切线,A,B是切点,AB交OP于点C,求证:CP⊥AB,且AC=BC.
答案
证明:
连接OA,OB,则OA=OB=半径
∵PA,PB是圆O切线,
∴∠PAO=∠PBO=90º
根据圆外一点引的两条切线长相等
∴PA=PB
∴⊿PAO≌⊿PBO(SAS)
∴∠APO=∠BPO
即PC是等腰三角形ABP顶角的平分线,根据三线合一
∴PC是底边AB的中垂线
∴PC⊥AB,AC=BC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.