如图所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.

如图所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.

题目
如图所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.
答案
证明:延长DC交AF于H,显然∠FCH=∠DCE.
又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.
因为矩形对角线相等,
所以△DCB≌△CDA,从而∠DBC=∠CAD,
因此∠FCH=∠CAD.①
又AG平分∠BAD=90°,
所以△ABG是等腰直角三角形,
从而易证△HCG也是等腰直角三角形,
所以∠CHG=45°.
由于∠CHG是△CHF的外角,
所以∠CHG=∠CFH+∠FCH=45°,
所以∠CFH=45°-∠FCH.②
由①,②∠CFH=45°-∠CAD=∠CAF,
于是在三角形CAF中,有CA=CF.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.