设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1-ξ
题目
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1-ξ
存在两个不同的η,ζ∈(0,1),使f'(η)f'(ζ)=1
答案
第一问:F(x)=f(x)+x-1,F(0)<0第二问:在[0 c]上,f(c)-f(0)=f'(a)(c-0),即f'(a)=(1-c)/c;在[c 1]上,f(1)-f(c)=f'(b)(1-c),即f'(b)=c/(1-c),因此f'(a)f'(b)=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点