如图所示,△ABC为等边三角形,以AB为边向外作△ABD,使∠ADB=120°,然后把△BCD绕着点C按顺时针方向旋转60°得到△ACE,如图所示,已知BD=5,AD=3. (1)由旋转可知线段BC,

如图所示,△ABC为等边三角形,以AB为边向外作△ABD,使∠ADB=120°,然后把△BCD绕着点C按顺时针方向旋转60°得到△ACE,如图所示,已知BD=5,AD=3. (1)由旋转可知线段BC,

题目
如图所示,△ABC为等边三角形,以AB为边向外作△ABD,使∠ADB=120°,然后把△BCD绕着点C按顺时针方向旋转60°得到△ACE,如图所示,已知BD=5,AD=3.

(1)由旋转可知线段BC,CD,BD的对应线段分别是什么?
(2)求∠DAE的度数;
(3)求∠BDC的度数;
(4)求CE的长.
答案
(1)BC对应AC,CD对应CE,BD对应AE.
(2)根据旋转的性质可得:∠EAC=∠DBC,
∴∠EAC=∠DBA+∠ABC,
∵△ABC是等边三角形,
∴∠BAC=∠ABC=60°,
∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC+∠DBA=120°+∠DBA,
∵∠ADB=120°,
∴∠DAE=∠BAD+∠BAE=∠BAD+120°+∠DBA=∠BAD+∠ADB+∠DBA=180°.
(3)∵△BCD绕着点C按顺时针方向旋转60°得到△ACE,
∴CD=CE,∠DCE=60°,
∴△CDE为等边三角形,
∴∠E=60°,
∴∠BDC=∠E=60°.
(4)由旋转可知AE=BD=5,
又∠DAE=180°,
∴DE=AE+AD=8.
而△CDE为等边三角形,
∴CE=DE=8.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.