已知函数f(x)=x2+ax+3,当x∈[-2,2]时,f(x)≥a恒成立,求a的最小值.
题目
已知函数f(x)=x2+ax+3,当x∈[-2,2]时,f(x)≥a恒成立,求a的最小值.
答案
设f(x)在[-2,2]上的最小值为g(a),
则满足g(a)≥a的a的最小值即为所求.
配方得
f(x)=(x+)2+3−(|x|≤2)(1)当
−2≤−≤2时,即-4≤a≤4时,
g(a)=3−,
由3-
≥a解得∴-4≤a≤2;
(2)当
−≥2时,即a≤-4,g(a)=f(2)=7+2a,
由7+2a≥a得a≥-7∴-7≤a≤-4
(3)当
−≤−2时,即a≥4,g(a)=f(-2)=7-2a,
由7-2a≥a得
a≤,这与a≥4矛盾,此种情形不存在.
综上讨论,得-7≤a≤2∴a
min=-7.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点