a,b是正实数且a+b=1 证明:ab+1/ab〉=4+1/4

a,b是正实数且a+b=1 证明:ab+1/ab〉=4+1/4

题目
a,b是正实数且a+b=1 证明:ab+1/ab〉=4+1/4
很容易做出ab<=1/4 1/ab>=4 但不等式符号方向不同不能相加 请问大家接下来如何做啊?
还没学函数呢.
答案
a+b=1推出ab<=(a+b)^2/4=1/4
ab+1/ab=ab+1/(16ab)+15/(16ab)>=1/2+15/(4ab)>=1/2+15/4=17/4
当且仅当ab=1/(16ab)和ab=1/4即ab=1/4时有最小值17/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.