计算积分∫0→θ x^2/θ(1-x/θ)^(n-1)dx
题目
计算积分∫0→θ x^2/θ(1-x/θ)^(n-1)dx
答案
∫0→θ x^2/θ(1-x/θ)^(n-1)dx
=θ^2*∫0→1( x^2(1-x)^(n-1)dx)
=θ^2*∫0→1(-1/n*x^2*d((1-x)^n))
=θ^2/n*[-x^2(1-x)^n|(0->1)+∫0→1(2x(1-x)^ndx)]
=2θ^2/(n(n+1))*∫0→1(-xd((1-x)^(n+1)))
=2θ^2/(n(n+1))*[-x(1-x)^(n+1)|(0->1)+∫0→1((1-x)^(n+1)dx)
=2θ^2/(n(n+1)(n+2))
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点