对任意一种矩阵范数,总存在一种与该矩阵范数相容的向量范数?

对任意一种矩阵范数,总存在一种与该矩阵范数相容的向量范数?

题目
对任意一种矩阵范数,总存在一种与该矩阵范数相容的向量范数?
答案
是,设‖A‖是所给n阶方阵矩阵范数,取a不为零的确定的n维向量,对任意n维向量x,定义‖x‖a=‖xaT‖,(注意上式等式右边是n阶方阵xaT矩阵范数),可以为证明‖x‖a满足向量范数的定义(略),且它与矩阵范数‖A‖相容,这是因为
‖Ax‖a=‖AxaT‖≤‖A‖‖xaT‖=‖A‖‖x‖a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.