如图,在底面是菱形的四棱锥P-ABCD中,∠BAD=60°,PA=PD,E为PC的中点. (1)求证:PA∥平面EBD; (2)求证:△PBC是直角三角形.

如图,在底面是菱形的四棱锥P-ABCD中,∠BAD=60°,PA=PD,E为PC的中点. (1)求证:PA∥平面EBD; (2)求证:△PBC是直角三角形.

题目
如图,在底面是菱形的四棱锥P-ABCD中,∠BAD=60°,PA=PD,E为PC的中点.

(1)求证:PA∥平面EBD;
(2)求证:△PBC是直角三角形.
答案
(本小题满分14分)
证明:(1)连接AC,AC与BD相交于点O,连接OE,则O为AC的中点.
∵E为PC的中点,
∴EO∥PA.
∵EO⊂平面EBD,PA⊄平面EBD,
∴PA∥平面EBD.
(2)设F为AD的中点,连接PF,BF.
∵PA=PD,∴PF⊥AD.
∵ABCD是菱形,∠BAD=60°,
∴△ABD是等边三角形.
∴BF⊥AD.∵PF∩BF=F,
∴AD⊥平面PBF.
∵BC∥AD,
∴BC⊥平面PBF.
∵PB⊂平面PBF,
∴PB⊥BC.
∴△PBC是直角三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.