∫(1/√(1-(sinx)^4))dx怎么算啊
题目
∫(1/√(1-(sinx)^4))dx怎么算啊
答案
∫(1/√(1-(sinx)^4)dx
=∫1/√{[(1-(sinx)^2][(1+(sinx)^2]}dx
=∫1/√{cosx^2[(1+(sinx)^2]}dx
=∫(sin^2x+cos^2x)/{|cosx|√[(1+(sinx)^2]}dx
=∫sin^2x/{|cosx|√[(1+(sinx)^2]}dx+∫cos^2x/{|cosx|√[(1+(sinx)^2]}dx (cosx>0时)
=∫sin^2x/{cosx√[(1+(sinx)^2]}dx+∫cos^2x/{cosx√[(1+(sinx)^2]}dx
=∫sinxtanx/√[(1+(sinx)^2]dx+∫cosx/√[(1+(sinx)^2]dx
=∫cosxtan^2x/√[(1+(sinx)^2]dx+∫cosx/√[(1+(sinx)^2]dx
=∫cosx(sec^2x-1)/√[(1+(sinx)^2]dx+∫cosx/√[(1+(sinx)^2]dx
=∫cosxsec^2x/√[(1+(sinx)^2]dx
=∫sec^2x/√[(1+(sinx)^2]dsinx
令sinx=t,x=arctant,dx=1/(1+t^2)dt,cos^2x=1-t^2,sec^2x=1/cos^2x=1/(1-t^2)
∫sec^2x/√[(1+(sinx)^2]dsinx
=∫1/{(1-t^2)√(1+t^2)}dt
=∫(1-t^2+t^2)/{(1-t^2)√(1+t^2)}dt
=∫1/√(1+t^2)dt+∫t^2/{(1-t^2)√(1+t^2)}dt
=ln[√(1+t^2)+t]+∫t^2/{(1-t^2)√(1+t^2)}dt
∫t^2/{(1-t^2)√(1+t^2)}dt
= 1/2∫t/{(2-1-t^2)√(1+t^2)}dt^2
=∫t/(2-1-t^2)d√(1+t^2)
=∫t/{2-[√(1+t^2)]^2}d√(1+t^2)
=1/2√2∫tdln{[√2-√(1+t^2)]/[√2+√(1+t^2)]}
=√2/4*ln{[√2-√(1+t^2)]/[√2+√(1+t^2)]}t+∫ln{[√2-√(1+t^2)]/[√2+√(1+t^2)]}dt
∫ln{[√2-√(1+t^2)]/[√2+√(1+t^2)]}dt
=∫ln[√2-√(1+t^2)]dt-∫ln[√2+√(1+t^2)]}dt
[图片]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点